Разделы
- Главная страница
- Новости
- Краткий исторический экскурс
- Эра динозавров
- Гигантские растительноядные динозавры
- Устрашающие хищные динозавры
- Удивительные птиценогие динозавры
- Вооруженные рогами, шипами и панцирями
- Характерные признаки динозавров
- Загадка гибели динозавров
- Публикации
- Интересные ссылки
- Статьи
- Архив
В коллайдере увидели "странную" античастицу
Исследователи, работающие на одном из детекторов Большого адронного коллайдера, впервые с начала работы ускорителя получили частицу, содержащую «красивый кварк» и «странный» антикварк.
Как говорится в сообщении на сайте детектора LHCb, на котором была «поймана» частица, ученым удалось реконструировать событие, по всем характеристикам совпадающие с распадом частицы, состоящей из кварка b (от «beauty» - «красивый» или «прелестный») и антикварка s (от «strange» - «странный»).
«Она возникла вместе с многими другими частицами в результате столкновения двух протонов, разогнанных до энергии 3,5 тераэлектронвольта. Мезон Bs, пролетев 1,5 миллиметра, распался на три другие частицы, одна из которых, мезон Ds, пролетев 6,5 миллиметра распалась на три долгоживущих частицы - мезоны K+, K- и пи-мезон. Траектории этих трех частиц были зафиксированы детектором LHCb. Полученные данные позволили с высокой точностью восстановить, какая именно частица стала их родоначальником», - пишут исследователи.
Детектор LHCb, один из четырех детекторов Большого адронного коллайдера, предназначен для поиска ответа на вопрос, почему наблюдаемая Вселенная состоит из обычной материи, а не из антиматерии и материи поровну. Для этого участники эксперимента будут изучать частицы, содержащие b-кварки - B-мезоны.
Эти частицы обладают уникальной способностью осциллировать, «переключаться» между состоянием частицы и античастицы. Как показали эксперименты на американском коллайдере Теватрон в Лаборатории имени Ферми, эти мезоны переключаются между двумя состояниями около трех триллионов раз в секунду.
Ранее в эксперименте LHCb удалось зафиксировать рождение мезона B+, состоящего из b-антикварка и u-кварка («верхнего» кварка). Впервые эта частица была обнаружена в 1980-х годах, сообщает РИА «Новости».
Оптоволокно может вытеснить полупроводники
Они выглядят как куски геля, прилипшие к подошве вашего тапка, но эти новые нано-технологии способны сделать компьютеры и Интернет в сотни раз быстрее.
Те коммуникационные технологии, которые, как ожидается, произведут настоящую революцию в сфере коммуникаций только через 5 или даже 10 лет, в настоящее время создаются доктором Коби Шеуэром с факультета электротехники Тель-авивского университета. Шеуэр разработал новую пластиковую технологию, основанную на нанофотонике, которая занимается созданием оптических приборов и их компонентов, пишет Science Daily. Отмеченный в журнале Optics Express, его пластиковый "фильтр", изготовлен из желобков нанометровых размеров, которые включены в пластик. При использовании в переключателях для оптоволоконных кабелей, новое устройство способно сделать наши устройства связи меньше, при этом придать им гибкость и повысить мощность, рассказывает ученый.
"Как только в каждый американский дом войдет оптоволоконный кабель, все коммуникации будут проходить через него - телефон, кабельное телевидение, Интернет. Но, чтобы избежать узких мест в передаче информации, мы должны отделить информацию, поступающую по разным каналам. Наши полимерные устройства могут делать это в оптическом диапазоне – быстрее, качественнее и дешевле, чем только может себе представить полупроводниковая промышленность", - подчеркивает доктор Шеуэр.
Все оптические устройства, используемые в сегодняшних средствах связи, имеют фильтр. Будь то драйвер в MacBook или кабель, который в разы удешевил междугородние звонки - в каждой из этих систем используются фильтры для очистки сигнала и интерпретации различных сообщений. В течение следующего десятилетия оптико-волоконные кабели, которые сейчас соединяют города, войдут непосредственно в каждый дом. Когда эта технология станет общедоступной, дальше революцию смогут произвести новые переключатели на пластиковой основе.
"Уже сейчас мы могли бы передать всего за несколько секунд все письменные тексты мира через один единственный кабель, созданный на основе оптоволоконной оптики ", - отмечает Шеуэр. - Но для того чтобы обрабатывать эти огромные объемы данных, мы должны установить фильтры, чтобы разобраться в поступающей информации. Для этого мы используем переключатель на пластмассовой основе, заменив им трудоемкие в изготовлении, а значит и дорогие полупроводники".
Полупроводники выращивают на кристаллах в стерильной лаборатории и обрабатывают в специальных печах, на их производство зачастую уходят дни, а иногда и месяцы. Они хрупкие и негибкие. "Наши переключатели, созданные на основе полимерной пластмассы, просты в производстве – их делают из жидкого раствора. Используя метод, именуемый "штамповка", почти в любой лаборатории можно сделать оптические приборы путем формовки силиконовой резины, то есть повторить нашу работу".
Заготовки из силиконовой резины пронизаны желобками нано размеров, невидимыми для глаза, - каждый меньше миллионной доли метра. Пластиковый раствор можно заливать в формы и в считанные минуты делать миллионы оптических переключателей. Подключенные к оптоволоконной сети, канавки в переключателях модулируют световые лучи, проходящие через кабели, при этом передаваемые данные фильтруются и кодируются в полезную информацию.
Самая большая проблема, считает доктор Шеуэр, - убедить отрасли связи в том, что полимеры – это стойкие материалы. "В разных отраслях промышленности существует множество предрассудков в отношении пластмасс", - говорит исследователь. Разработанное им устройство также может быть использовано в гироскопах самолетов, кораблей и ракет; его можно вставлять в сотовые телефоны, а также вмонтировать в гибкие виртуальные перчатки, чтобы врачи могли "оперировать" через компьютерные сети, находясь вдали от пациентов.