Разделы
- Главная страница
- Новости
- Краткий исторический экскурс
- Эра динозавров
- Гигантские растительноядные динозавры
- Устрашающие хищные динозавры
- Удивительные птиценогие динозавры
- Вооруженные рогами, шипами и панцирями
- Характерные признаки динозавров
- Загадка гибели динозавров
- Публикации
- Интересные ссылки
- Статьи
- Архив
Слепые видят синий день
Свет для нас это не только непосредственный источник и носитель зрительной информации. Это еще и регулятор жизненных циклов и даже катализатор биохимических реакций в коже. Причем для регуляции околосуточных (циркадных, циркадианных) ритмов, синхронизируемых центром в гипоталамусе, требуется исключительно «квантованная» бинарная информация по принципу есть/нет, вкл./выкл.
Такой биологический механизм есть даже у одноклеточных фотосинтезирующих водорослей, обладающих способностью двигаться по направлению к источнику света, а для них и жизненной энергии. Это обеспечивается наличием простейшего светочувствительного «глазка». У многоклеточных сохраняется эта способность. Сначала на орган зрения была выделена одна из клеток, а затем он превратился в двуклеточные из воспринимающей и подлежащей клетки, наподобие пигментного эпителия сетчатки глаз более развитых собратьев.
У человека зрительная информация составляет 97% от всей информации, регистрируемой органами чувств. Не удивительно, что наш глаз представляет из себя сложнейшую систему, причем особенно точно устроена его «воспринимающая» часть сетчатка. Регистрирующие за счет пигмента свет клетки палочки и колбочки рассеяны по всей её поверхности. Они формируют нервный импульс, преобразуя энергию света в электрическую, а затем уже этот импульс передается сначала на коленчатые тела таламуса подкорковый центр зрительного анализатора и только потом в соответствующий центр коры больших полушарий.
Оказывается, наш глаз способен регистрировать и «незрительную» световую информацию, причем альтернативным способом.
Это выяснилось в результате наблюдения за абсолютно слепыми людьми, сохранившими способность воспринимать свет в качестве «незрительной» информации. Предварительные опыты на мышах также свидетельствуют в пользу различных механизмов восприятия «зрительной» и «незрительной» составляющих, поскольку даже в отсутствие палочек и колбочек они сохраняли способность синхронизировать циркадианные ритмы.
Выяснилось, что у млекопитающих за это отвечают клетки ганглионарного слоя сетчатки.
Только в отличие от палочек, чувствительных ко всему диапазону волн видимого света, они больше похожи на колбочки, которые воспринимают только одну составляющую в зависимости от пигмента (синий, зеленый или красный).
Ганглионарные клетки регистрируют фотоны света с длиной волны около 480 нанометров, что соответствует видимой синей части спектра.
Для того чтобы изучить этот механизм у людей, Фархан Зайди из Имперского колледжа Лондона и его коллеги из Гарварда, Оксфорда и Университета имени Томаса Джефферсона подобрали пациентов с функционально сохранным ганглионарным слоем при утративших свои функции палочках и колбочках.
На самом деле гибель фоторецепторных клеток практически всегда влечет за собой и гибель ганглионарного слоя. Но ученым всё-таки удалось найти двух пациентов, ставших исключением. Именно благодаря им учёным удалось выяснить роль незрительных рецепторов.
У первого пациента офтальмологи измеряли уровень секреции мелатонина в зависимости от уровня света, при этом сравнивая эффект от света с длиной волны 555 нм с влиянием света 480 нм, специфичного для ганглионарных клеток. Длина волны в 555 нанометров соответствует зелёному цвету, эффективнее всего воспринимаемому палочками и колбочками и одновременно и, вероятно, неспроста максимуму в привычном спектре излучения Солнца.
Мелатонин один из гормонов-регуляторов околосуточных ритмов, концентрация которого в крови повышается в дневное время.
Как оказалось, возросла она и в ответ на свет с длиной волны в 480 нм, причем в несколько раз больше, чем на 555 нм.
Более того, синий цвет стимулировал циркадианный центр гипоталамуса.
Вся его нервная система стала лучше и быстрее работать уменьшилась задержка реакции и усилилась активность мозга. Все это произошло в ответ на синий свет, но не на самый воспринимаемый фоторецепторами зеленый.
У второй пациентки им удалось добиться «ощущения света».
При разном освещении ее просили рассказать, чувствует ли она что-нибудь. Именно при синей лампе она отметила странное чувство света. Ученые интерпретируют эту способность ганглионарных клеток регистрировать освещение как альтернативу палочкам и колбочкам.
С физической точки зрения именно синий цвет и должен обладать таким свойством ведь его фотоны обладают наибольшей энергией и могут донести информацию, когда остальные не достигли своей цели.
Гораздо интереснее биологический смысл этой системы, ведь это не просто рудимент или атавизм, доставшийся нам от первых многоклеточных с их простыми глазками. Это часть сложнейшей регуляции суточных ритмов, включающей гормональные перестройки, изменение активности мозга, работы центров кровоснабжения и дыхания. Хронобиологи даже в работах на растениях отмечают ключевую роль синего, а не какого-либо другого света в регуляции не только циркадианных, но и круглогодичных циклов.
Впрочем, как раз биологический смысл остался за рамками работы Зайди и его коллег. Возможно, дело в том, что синий цвет гораздо лучше рассеивается в атмосфере и оттого регулирование циркадианных ритмов не требует непосредственного нахождения под солнцем. Кроме того, свет этих длин волн гораздо интенсивней в спектре Луны, освещающей эволюцию всей жизни с самого её зарождения.