Динозавры и история жизни на Земле

Статистика




Яндекс.Метрика




Нано в третьем измерении

В начале года исследователи Массачусетского технологического института предложили методику промышленного получения микрочастиц со штрихкодом. Эта технология основана на микроструйном устройстве, которое позволяет производить уникальные пластиковые микрочастицы, для использования в биомедицинских аналитических приложениях.

Теперь же исследователи усовершенствовали свою методику с целью создания частиц с тонко организованной внутренней структурой. Создатели технологии Нед Томас и Патрик Дойл отмечают, что их технология поможет увеличить чувствительность диагностических материалов массового производства в десятки тысяч раз. Их инновация подробно описана в журнале Angewandte Chemie.

В двумерной системе, предложенной учёными, уникальные биосенсорные частицы создаются в потоке двух растворов, содержащих молекулярные компоненты будущих пластмассовых структур. Растворы пропускаются через капилляры толщиной 0,2 миллиметра, вытравленные в кремниевом шаблоне. Пропуская через этот шаблон импульс ультрафиолетового излучения, ученые форсируют агломерацию молекул в индивидуальные твердые частицы с размерами порядка 50 микрометров. Для того чтобы сделать из этих частиц биологические сенсоры, команда Дойла вводит в раствор полимера биологические метки ДНК. Для того чтобы получить большой массив уникальных частиц, ученые наносят на шаблон точки, которые и создают уникальный код на поверхности частиц. Этот код виден в обычный оптический микроскоп.

На следующем этапе Томас и Дойл использовали недавно разработанную методику так называемой фазовой литографии, которая помогает создать внутреннюю структуру в пластиковых микрочастицах. В отличие от микроточек на кремниевом шаблоне, которые отбрасывают тень в ультрафиолетовом луче и тем самым создают двухмерный орнамент на поверхности частицы, технология фазовой литографии позволяет организовать трехмерную структуру внутри объема частицы.

Ученые добились этого следующим образом: нижняя грань прозрачного блока, составляющего основу микроструйной установки, как оказалось, может быть еще и трафаретом для фазовой литографии. Ученые придали ей волнообразную форму. Таким образом, ультрафиолетовый свет, необходимый для запуска образования полимерных частиц, должен быть проецирован на систему микрокапилляров снизу вверх. В итоге в каналах образуется сетка множества лучей, световые волны которых колеблются с одной и той же частотой, но в различных фазах и интерферируют между собой.

Положительная и отрицательная интерференция приводит к образованию трехмерного ультрафиолетового изображения в каждом канале.

При проецировании такой трехмерной интерференционной картины на раствор полимерного прекурсора (материала, из которого получается конечный продукт) его затвердевание также приводит к образованию частицы с трехмерной структурой. Томас и Дойл уверены, что их технология позволит в итоге получать частицы размером в 10 мкм, а трехмерный орнамент внутренней структуры при надлежащей организации фазовой маски может быть начерчен линиями толщиной в 200 нм.

Применение своих частиц ученые видят в качестве сверхбыстрых и сверхчувствительных сенсоров. Их чувствительность обусловлена большой площадью поверхности, к которой могут быть привиты молекулы ДНК или другие биологические маркеры.

Традиционные твердотельные микрозонды могут нести молекулы только на своей наружной поверхности, тогда как новые микрочастицы могут прикреплять биометки на гораздо большей площади, так как их внутренняя решетчатая трехмерная структура сообщается с окружающим пространством.

Таким образом, частица того же размера может участвовать в одновременном взаимодействии с существенно большим числом молекул, что в итоге приводит к более интенсивному коллективному сигналу биологических флуоресцентных меток. При этом не имеет значения, где произошло взаимодействие между частицей и искомой молекулой – внутри или на поверхности, так как частицы прозрачны. Томасу и его команде уже удалось показать десятикратное увеличение чувствительности своих биологических сенсоров по сравнению с традиционными, и он надеется вскоре продемонстрировать тысячекратное усиление сигнала.

Кроме того, новые частицы, по мнению Томаса, могут проявить себя в других приложениях, где могут быть использованы их механические характеристики. Например, полимерные частицы с тонкой внутренней трехмерной структурой должны обладать возможностью сминаться и помещаться в очень ограниченных объемах, как, например, красные кровяные тельца сжимаются при проникновении в тончайшие капилляры.

Кроме того, частицы с решётчатой внутренней структурой могут быть использованы в качестве сит для разделения и управления гораздо более миниатюрными частицами. Такие сита смогут менять свои параметры (например, размер ячейки) под действием определенных внешних условий, таких как кислотность среды, и быть использованы в качестве молекулярных вентилей.