Разделы
- Главная страница
- Новости
- Краткий исторический экскурс
- Эра динозавров
- Гигантские растительноядные динозавры
- Устрашающие хищные динозавры
- Удивительные птиценогие динозавры
- Вооруженные рогами, шипами и панцирями
- Характерные признаки динозавров
- Загадка гибели динозавров
- Публикации
- Интересные ссылки
- Статьи
- Архив
Кинобумага стала белой
Вполне возможно, что уже нынешнее поколение станет свидетелем заката эры обычных бумажных книг. Электронные дисплеи всех возможных форм и видов уже сейчас активно вытесняют бумагу с наших рабочих мест, однако пока трудно представить младшеклассников без огромных ранцев за спиной и студентов, которые в начале очередного семестра не выстраиваются в очереди за новой порцией книг в библиотеку.
Все это может измениться благодаря развитию электронных книг невесомых, интерактивных и способных поспевать за все убыстряющимся развитием науки и технологий. В наши дни, правда, электронные книги тоже чаще читают с экранов обычных мониторов, но, например, в нескольких американских университетах уже сейчас проходят эксперименты, в которых студентов обеспечивают не только доступом к электронной библиотеке, но и устройствами, благодаря которым чтение электронных книг становится куда проще и приятней. Это твердые панели, покрытые электронной бумагой.
Принципиальное отличие электронной бумаги от обычных мониторов в том, что изображение в ней формируется в отраженном свете, а не благодаря пропусканию подсветки через матрицу (как в ЖК-дисплеях) или яркому свечению отдельных пикселей (как в плазменных мониторах и старых добрых электронно-лучевых трубках).
Электронная бумага имитирует обычные чернила на обычной бумаге, а потому и чтение их ничем не отличается от чтения с обычной бумаги. Но при этом изображение на листе может меняться по команде микрокомпьютера, которым снабжен лист.
Их прекрасно видно под разными углами, при рассеянном свете и так далее, и технология эта перманентна, она не требует постоянно пропускать через электронную бумагу ток для удержания изображения, достаточно поддерживать постоянный электрический потенциал в нужных точках.
В наши дни существует уже с полдюжины технологий электронной бумаги, самая известная из которых электрофоретика, а ее самый успешный представитель «электронные чернила», E-ink, которые выпускает одноименная американская корпорация. Цветные заряженные частички в крохотных капельках масла по команде электрического поля притягиваются к верхнему прозрачному электроду бумаги, и на белой «бумаге» вдруг появляется цветная точка, множество которых и формирует изображение.
Есть, однако, одна важная проблема, общая для всех имеющихся технологий нынешняя электронная бумага не идет ни в какое сравнение с белым листом, полученным из настоящей целлюлозы.
Даже лучшие опытные прототипы, не говоря уже о запущенных в массовое производство образцах, выглядят сероватыми, похожими на неотбеленную бумагу, сделанную из вторсырья старых книг и газет. Коэффициент отражения «белого» электронного листа от технологии к технологии болтается в диапазоне от 20% до 40%, в лучших случаях едва поднимаясь над 50%. Коэффициент отражения хорошей белой бумаги более 80%, благодаря чему ее и можно читать с фонариком под одеялом, не ломая глаза.
Американские ученые и инженеры под руководством Джейсона Хайкенфельда из Университета города Цинциннати в американском штате Огайо утверждают, что им удалось решить эту проблему.
Технология, которую авторы назвали «электрофлюидной», позволяет достичь коэффициента отражения до 85% и делает электронную бумагу по-настоящему белой и яркой.
Работа ученых принята к публикации в Nature Photonics. Правда, у опытного образца она пока лишь 55%.
Секрет успеха в использовании яркого алюминиевого покрытия для представления «не закрашенных» в данный момент участков бумаги. Именно алюминий дает превосходный коэффициент отражения, практически постоянный во всем видимом диапазоне света.
Сама же технология на удивление проста, и, чтобы понять ее, достаточно помнить физику в рамках школьного курса. Вся «бумага» разделена на шестигранные пиксели, подобные пчелиным сотам. Каждый же пиксель представляет собой многослойный «бутерброд»: внизу алюминиевый электрод, хорошо отражающий свет, вверху ITO-электрод из смеси оксидов индия и олова, прозрачный для видимого света, между ними же может двигаться жидкость, отделенная от электродов тонким слоем диэлектрика. Весь «бутерброд» помещен между двумя слоями защитного пластика.
В середине «жидкого» слоя имеется углубление, в котором силы поверхностного натяжения плотно удерживают чернила. Площадь сечения углубления несколько процентов, потому на цвет пикселя в целом оно почти не влияет. Но стоит приложить напряжение (при этом не обязательно течь току!), и чернила выходят из углубления, заполняя весь пиксель и меняя его цвет. Место чернил в углублении заменяет масло, которое с этими чернилами не смешивается и имеет другой коэффициент поверхностного натяжения. Капельки столь малы, что силами тяжести против сил натяжения и электрических сил можно пренебречь дисплей будет работать, как бы вы его ни повернули, краска из углубления не вытечет.
Собственно, вот и вся технология. По словам авторов, процесс изготовления такой матрицы очень прост и легко укладывается в рамки обычных технологий печати.
Время реакции на импульс измеряется миллисекундами, а значит, на этой электронной бумаге вполне можно смотреть кино.
Толщина же может быть сведена до 15 мкм, что позволяет заключить эти пиксели между слоями гибкого пластика и можете хоть скручивать эту электронную бумагу в рулоны.
Правда, пока Хайкенфельду и его коллегам удалось сделать лишь одноцветный вариант матриц, который подойдет лишь для черно-белой (или желто-белой, или красно-белой) бумаги. Им еще предстоит придумать, как регулярным образом заполнять соседние пиксели разной краской; впрочем, такие технологии тоже существуют, осталось лишь «поженить» их с технологией печати электрофлюидных матриц. И хотя такие технологии не заменят возможности поваляться в гамаке с томиком любимого поэта, они помогут школьникам перестать гнуться под тяжестью знаний.