Динозавры и история жизни на Земле

Статистика




Яндекс.Метрика




Плазма жалит по кривой

В конце 2007 года двум физикам из Университета Центральной Флориды удалось, казалось бы, невозможное – заставить луч света двигаться по кривой в совершенно однородном пространстве. Деметрий Христодулидес и Аристид Догариу на практике реализовали так называемый пучок Эйри, бывший прежде лишь теоретическим курьёзом.

Получилось что-то вроде фонаря, которым можно светить за угол.

Или пушки, положенной на бок. Если верить известному анекдоту, из неё за угол можно выстрелить. Такое сравнение даже точнее, поскольку пучок Эйри, как и летящий снаряд, выписывает в воздухе параболу, только вершина параболы у света не в середине траектории, а в начале.

Учёные из Флориды с самого начала предсказывали, что такое необычное поведение светового пучка может пригодиться в самых разных областях науки. И действительно, не прошло и года, как шотландский профессор Кишан Дхолакия и его коллеги создали «световую метлу», успешно выметавшую с вверенного ей участка жидкости весь микроскопический мусор. В эксперименте в качестве мусора выступали крохотные стеклянные шарики, но уже тогда учёные обещали, что скоро примутся за перемещение клеток и сортировку мелких частиц. Наверняка за полгода им чего-нибудь да удалось достигнуть.

Применения пучков Эйри в «народном хозяйстве» мы пока не дождались. Но они стали гораздо ближе к реализации благодаря работе физиков из Университета американского штата Аризона, опубликованной в последнем номере Science.

Учёные под руководством Павла Полынкина создали «световые пули», летящие по загнутым траекториям, и искривлённые «плазменные шнуры».

Последним прочат большое будущее в дистанционных исследованиях атмосферы, управлении погодными явлениями и даже борьбе с терроризмом.

Стоит сразу оговориться, впрочем, что пока никто не собирается стрелять плазмой в спрятавшегося за углом террориста. Вряд ли получится и поливать врагов пулями, летящими по кривой, в духе бекмамбетовского фильма «Особо опасен». Добиться существенного в макроскопических масштабах отклонения от прямой линии проблематично: к тому моменту, как пучок начинает сильно отклоняться в сторону, его интенсивность уже заметно падает.

Характерное смещение «световой пули» может быть лишь немногим больше ширины пучка, в пределах которого фазу световой волны можно контролировать с оптической точностью. На современном уровне развития технологий речь идёт максимум о нескольких метрах, а в установке авторов статьи в Science плазменный шнур изгибался не больше чем на сантиметр при длине чуть меньше метра. За угол не за угол, но небольшое препятствие обогнёт.

По словам Полынкина, для него и его коллег искривление филаментов – лишь новый метод изучения самих плазменных образований, которыми выпускник московского Физтеха занимается в США уже более 10 лет. В распоряжении учёного есть мощный лазер, способный по 10 раз в секунду выстреливать световые импульсы продолжительностью в ничтожные 35 фемтосекунд (примерно 1/30-триллионная секунды). Если бы можно было остановить время, эти «световые пули» были бы похожи на «стопку блинов» шириной в 1,5 см и толщиной всего 10 микрон, следующих друг за другом на расстоянии в 30 тысяч километров.

В каждый импульс при этом вкладывается вполне макроскопическая энергия в 35 миллиджоулей, так что мгновенная мощность лазера оказывается равной чудовищному значению в 1 тераватт. Несколько десятков таких лазеров с лёгкостью «съели» бы всю электроэнергию, генерируемую в мире, если бы работали не в импульсном, а в постоянном режиме (средняя световая энергия лазера, впрочем, куда меньше – порядка 1 Вт). Ну а плотности световой энергии в «блине» вполне хватает, чтобы превратить воздух, в котором он движется, в плазму, вытягивающуюся вдоль траектории пучка. Это и есть плазменный филамент.

Исследовать поведение плазмы здесь очень сложно, поскольку непосредственно в филамент никакой прибор не поставишь – слишком неподходящие в нём условия работы для электронной техники. Достаточно много информации можно получить, анализируя вторичное излучение, которое плазма высвечивает в узком конусе, охватывающем лазерный луч наподобие воротника. Однако эти конусы от разных участков длинного плазменного филамента спутываются на разных длинах волн, и разобрать, какой свет пришёл от начала шнура, а какой от конца, практические невозможно.

И вот здесь может очень помочь искривление шнура: каждый участок филамента будет высвечивать свой конус, которые превосходно разделяются на экране.

Как признался Павел Полынкин в разговоре с «Газетой.Ru», он почти случайно натолкнулся на работу Христодулидеса, услышав его доклад на одной из конференций. До этого учёные экспериментировали с прямыми пучками Бесселя, которые тоже почти не расходятся при движении, а потому позволяют генерировать очень длинные плазменные шнуры. Взяв в команду учёных из Флориды, Полынкин и его коллеги смогли согнуть филаменты.

Учёные пропустили пучок лазера через специальную пластинку, придающую изначально плоской электромагнитной волне фазовый профиль кубической параболы. Дальше на пути света учёные поставили обычную линзу, и в её фокальной плоскости лазерный «блин» превратился в пучок Эйри. Внешне он напоминает «птичку» с распростёртыми под прямым углом крыльями, собранную из множества отдельных «волокон». В главном волокне, которое расположено в «голове птички», сосредоточена основная энергия всего пучка (около 30%).

Cвет – это, по сути, самоподдерживающиеся колебания непрерывно превращающихся друг в друга электрического и магнитного полей. И фазы волны в пучке Эйри подобраны таким образом, что эти превращения качественно сохраняют вид пучка постоянным при движении вперёд, но при этом сами отдельные волокна – и «птичка» в целом – постоянно смещаются в сторону.

На деле такое смещение – это некоторый обман, поскольку центр тяжести всего пучка всё-таки движется по прямой линии. Однако для генерации плазмы важен не центр тяжести, а максимум интенсивности, а значит, образуются филаменты как раз там, где проходят отдельные световые волокна. И, соответственно, прослеживают изгиб их траектории.

Результат Полынкина и его коллег – это не только очередная демонстрация изящного физического эффекта и новый метод исследования плазменных шнуров.

Учёный с ходу смог назвать сразу несколько потенциальных приложений открытия.

Во-первых, лазерные филаменты на пучках Эйри могут пригодиться для управления молниями и изучения атмосферы. Год назад Жером Каспарян и его коллеги сообщили о том, как научились вызывать молнии в облаках с помощью плазменных филаментов. Не исключено, что в будущем можно будет заранее разряжать грозовые тучи рядом с аэропортами, «стреляя» в небо лазером.

У филаментов на базе пучков Эйри здесь есть очень важное преимущество. Эти пучки «самовосстанавливающиеся»: когда какая-то неоднородность в облаке или турбулентный участок воздуха перекрывает часть пучка, энергия из остальных волокон перераспределяется в него, восстанавливая потерянное волокно. А потому главный филамент окажется там же, где и должен быть, несмотря на частичное перекрытие – пусть с чуть меньшей энергией. Ровно по той же причине эти филаменты могут оказаться полезны и для изучения атмосферы: вторичное излучение плазмы может подсветить нужный участок атмосферы, позволяя учёным измерить её параметры там, где им нужно.

Примерно таким же образом предполагается бороться и с терроризмом, удалённо обследуя подозрительные сумки и авто на предмет наличия в них взрывчатки. Дескать, излучение плазменного филамента нагреет и подсветит подозрительный объект, а нам останется только искать следы взрывчатых веществ в спектре рассеянного испарениями света.

Впрочем, до реальных применений ещё очень далеко, считает Павел Полынкин.

Надёжно контролировать место образования и физические параметры филамента учёные пока не в состоянии. А соединять грозовое облако с экспериментальной установкой непрерывным каналом ионизованного воздуха не хотелось бы: по этому каналу разряд с удовольствием сбежит на землю, ударив прямо в лазер и в исследователя. Учёным сейчас хотелось бы лучше понять саму физику плазменных филаментов. Их искривление очень поможет в таких исследованиях.