Разделы
- Главная страница
- Новости
- Краткий исторический экскурс
- Эра динозавров
- Гигантские растительноядные динозавры
- Устрашающие хищные динозавры
- Удивительные птиценогие динозавры
- Вооруженные рогами, шипами и панцирями
- Характерные признаки динозавров
- Загадка гибели динозавров
- Публикации
- Интересные ссылки
- Статьи
- Архив
Как сбивается косяк
Многие животные, чтобы кормиться, размножаться и мигрировать, собираются в огромные коллективы, которые могут насчитывать многие тысячи и миллионы особей. Громадные конские табуны, которые носились по степям Европы и Западной Азии ещё несколько тысяч лет назад, в наши дни уже не встретишь. Но вот стаи птиц, тучи саранчи или косяки рыб сколько угодно.
Математики уже давно создали многочисленные модели, которые описывают такие животные коллективы «сверху вниз» как сплошную среду, плотность, направление движения и другие характеристики которой могут меняться от точки к точке. А рост компьютерной мощи в последние десятилетия даже позволил воссоздать эти модели «снизу вверх», задавая правила поведения индивидуальных особей в зависимости от ситуации и получая на выходе всю ту же сплошную среду, подчиняющуюся тем же общим законам, что биологи подметили много десятилетий назад.
Однако одно дело когда модели, построенные с разных сторон, сходятся, и другое проверить, насколько они работают на практике. Наблюдать поведение тысяч и миллионов особей дело крайне хлопотное, но группе учёных из США и Норвегии под руководством Николаса Макриса из Массачусетского технологического института удалось создать метод для таких измерений.
Раз в исследовании участвуют норвежцы заранее ясно, что речь пойдёт о рыбе. И действительно:
учёные смогли в деталях проследить, как образуются косяки селёдки, приходящей на нерест к заливу Мэн на восточном побережье США и Канады.
Николас Макрис даже не биолог. Он физик, инженер и специалист по акустической океанографии науке об исследовании океана и всего того, что в нём находится, с помощью звуковых волн.
Впрочем, нынешняя работа, опубликованная в последнем номере Science, посвящена не методике, а непосредственно биологии. Авторы восстановили трёхмерную картину распределения рыб в районе банки (мелководья) Джорджа, отделяющей залив Мэн от главной впадины Атлантического океана.
Каждый год в начале осени сотни миллионов и даже миллиарды особей атлантической сельди (Clupea harengus) приходят сюда на нерест. Каждую ночь огромные стаи самок одна за другой откладывают икру на склонах подводных холмов банки, а следующие между ними самцы оплодотворяют икринки, чтобы те немногие из них, что не будут съедены хищниками, в будущем дали начало новому поколению сельди.
В течение недели в конце сентября начале октября 2006 года каждый вечер здесь курсировали два судна, находившихся под научным началом Макриса. На одном из них был установлен сонар, испускавший звуковые импульсы, на другом набор тех самых микрофонов, с которого снимали полезный сигнал. И каждый вечер приборы показывали примерно одну и ту же картину.
Незадолго до захода солнца на глубине около 150200 метров в северной части банки начиналось непонятное движение. Сельдь, весь день в беспорядке сновавшая туда-сюда, к вечеру начинала собираться к склонам балки. В течение примерно часа поверхностная плотность рыб увеличивалась с «фонового» для этого времени года уровня около 0,050,1 рыбины на квадратный метр вдвое-втрое. Но как только в каком-то небольшом районе размером с километр или даже несколько сотен метров плотность превышала критическое значение в 0,180,2 м2, события начинали развиваться уже совсем с другой скоростью.
За какие-то 1520 минут плотность рыб увеличивалась в 1015 раз это образовывался первый затравочный косяк.
Дальше рост продолжался не только интенсивно, но и экстенсивно. Вокруг затравочного косяка (которых могло быть и несколько) начинали собираться другие рыбы, размер плотного участка рос, и вскоре на десятки километров вокруг (сонар позволяет контролировать примерно 40 км) начинали расходиться настоящие «волны организации» и уплотнения рыб. Хотя техника Макриса пока не в состоянии проследить за движением отдельных рыб, он и его коллеги уверены, что шла именно волна коллективного поведения. Дело в том, что скорость её распространения составляла около 510 метров в секунду, в то время как сельдь, если её только не вспугнёт стая тунцов или дельфинов, плавает в десятки раз медленнее, с крейсерской скоростью в 20 см/c.
После того как коллективное движение охватывало весь подводный склон на это требуется от часа до нескольких часов, косяк начинал уже физическое перемещение. Со скоростью тех же 20 см/с рыбы мигрировали к югу, где дно расположено всего в 4050 метрах от поверхности. Здесь-то уже в районе полуночи и происходило массовое икрометание. Притом по картине движения плотности рыб в арьергарде косяка видно, что «прибрежных» селёдок постоянно сменяли следующие партии, приходившие из глубин и включавшиеся в общее движение.
Авторы работы уверены, что к относительному мелководью рыбы смещались именно для икрометания, а не следуя за крилем и мелкой рыбёшкой: у всех выловленных по дороге селёдок кишки оказались пустыми, но брюхо, тем не менее, было распухшим от икры. Известно, что перед нерестом сельди довольно долгое время «постятся».
Все эти особенности движения наличие критической плотности, интенсивный и экстенсивный рост затравочных возмущений, наличие рыб-лидеров и даже распространение «волн организации» предсказывают и модели коллективного поведения животных. Насколько они применимы к птичьим стаям и тучам саранчи станет ясно, когда Макрис или кто-то другой создаст подобные сонары не для водной, а для воздушной среды.