Динозавры и история жизни на Земле

Статистика




Яндекс.Метрика




Микротомография на службе палеонтологии

Сегодня уже невозможно представить без томографии современную медицину. Но видеть то, что скрыто от глаз, нужно не только медикам. Микротомографию используют физики и микроэлектронщики, геологи и палеонтологи.

О месте микротомографии в современной палеонтологии рассказал корреспондентам Infox.ru старший научный сотрудник Палеонтологического института РАН им. А.А. Борисяка кандидат биологических наук Алексей Пахневич: «На микротомографе мы изучаем внутреннее строение объектов. Это необходимо, чтобы понять, к какому роду и виду относится данное ископаемое животное или растение. Метод дает возможность увидеть и тонкую внутреннюю структуру объекта, например древесины или раковины. По деталям строения можно сделать вывод об особенностях развития и образе жизни древних организмов».

Чтобы изучить ископаемый объект изнутри, до появления микротомографии нужно было его разрушить. Например, с раковины брахипод исследователь делал тонкие срезы-шлифы и, сопоставляя внутреннюю структуру на серии срезов, строил ее объемное изображение. Для изучения микроструктуры можно использовать электронный микроскоп, но для этого надо изготовить образец с напылением и изучать поверхность. Микротомография позволяет увидеть объект изнутри, сохраняя его в целости, а это особенно важно для редких находок.

В микротомографе образец сканируется путем облучения рентгеновскими лучами, причем под любым заданным углом, что позволяет увидеть объект с разных сторон. Затем программа делает виртуальные срезы, то есть с шагом в несколько микронов проходит сквозь объект. И наконец, строит трехмерное изображение ископаемого снаружи и изнутри, включая скрытые от глаз детали внутреннего строения.

Сам Алексей Пахневич занимается брахиоподами. Это морские организмы, господствовавшие в палеозое, когда они местами сплошь покрывали морское дно. В то время они исчислялись тысячами видов. Но после великого кризиса на рубеже перми и триаса количество видов брахиоподов уменьшилось вдвое, а после следующего великого вымирания, на рубеже мела и палеогена, они отступили на вторые роли, уступив место двустворчатым моллюскам. Однако небольшое их количество, около 400 видов, живут и сегодня, например, один вид входит в состав беломорской фауны.

Брахиоподы внешне очень похожи на двустворчатых моллюсков: у них тоже две створки раковины. Но брахиоподы не моллюски! Их тело закрыто створками раковины не с боков, как у двустворчатых моллюсков, а со спинной и брюшной сторон. Внутри раковины расположены своеобразные руки — ловчий аппарат, покрытый мельчайшими щупальцами. Брахиоподы прикрепляются ко дну и фильтруют щупальцами воду, питаясь органикой. По-русски их называют плеченогими, хотя специалисты, по словам Алексея Пахневича, не любят это название.

На экране компьютера крутится изображение брахиопода, и можно разглядеть «ручной аппарат». «Этот хорошо сохранившийся экземпляр. Мы называем его «голотип», то есть типовой образец вида, — объясняет исследователь. — С ним сравнивают все остальные находки, поэтому голотип должен храниться невредимым. Но можно сделать с него микротомограмму».

Другие часто используемые для микротомографии объекты — аммониты — головоногие моллюски, жившие в палеозое и мезозое. Спиральную многокамерную наружную раковину сохранили современные родственники аммонитов наутилусы, а другие головоногие, например кальмары, осьминоги и каракатицы, раковину утратили. Детали строения камер раковины и соединяющего их канала-сифона — важные признаки для классификации аммонитов. А те или иные виды аммонитов служат маркерами геологических слоев. Это так называемые руководящие ископаемые.

С помощью микротомографа палеонтологи исследуют как целые раковины или кости, так и их микроскопическое строение. Он дает информацию о пористости объекта и минеральном составе окаменелости.

Микротомография помогает изучать и янтарь, в частности попавших в янтарь насекомых. Для них это ловушка, а для ученых — созданный природой метод сохранения древних организмов.

Большой интерес вызывают микрообъекты. Недавно ученые из ПИН РАН под руководством академика Розанова, используя микротомограф, исследовали в фосфоритах возрастом 2 млрд лет окаменевшие одноклеточные ископаемые водоросли. Их клеточные стенки замещены минералами и хорошо видны на микротомограмме. Так получилась объемная «фотография» микроорганизмов, живших 2 млрд лет тому назад.

Уже сейчас возможности микротомографии в палеонтологии велики. А в будущем, ученые смогут воссоздать трехмерный микромир далекого прошлого — мельчайших ископаемых бактерий. Это поможет в изучении не только Земли, но и других планет Солнечной системы. Например, того же Марса, где уже сейчас исследователи ищут следы железобактерий, а также пытаются изучать аналоги марсианских пород на Земле с помощью микротомографа.

На фото - срез раковины брахиоподы в облицовке московского метро. Виден ручной аппарат. Этот срез, хоть и раскрывает внутреннее строение окаменелости, к микротомографии отношения не имеет.